

6689

IRRIGATION DESIGN IN AFRICA

AFRICA OSSIS

Irrigation design in Africa

Towards an interactive method

Jan Ubels and Lucas Horst (eds.)

Contents

	9
List of figures	9
List of tables	10
List of abbreviations	
	11
Preface	
Chapter 1 Tuning irrigation systems to their social environment	12
Susan Minae and Jan Ubels	13 13
Susan Minde and July Obers	13
1.1 Introduction 1.2 Placing irrigation in its social context	
1.2 Placing irrigation in its state of the conventional design procedure	16
1.4 Redefining the content of irrigation design	18
1.5 The need for an interactive process	20
1.5 The need for all interactive p	
Chapter 2	
Imigation design and African farming systems	22
Ibrahima S. Dia and Peter P. Mounga	22
2.1 Introduction	23
2.3 The design of the Jahaly Pachart scheme on the same	24
O bio missor	28
2.4 Comparing design assumptions and farmer rationale	30
2.5 Comparing design assumptions and nodserior organic	33
a c In gearch of design allematives	34
2.6.2 Tuning the design to the organization of labour washing	35
household	3′
2.7 Some concluding observations	

	apter 3	
	gation organization and African communities	
	n Kimani and Jan Ubels	4
	Introduction	4:
3.2	Irrigation organization: an orientation	4
	3.2.1 Organizational components	42
	3.2.2 Organization and the local community	43
	3.2.3 Organization and system design	43
	Water distribution and farmer organization	44
	3.3.1 'Shifting irrigation' in Baringo District, Kenya	44
	3.3.2 Village schemes on the Ile à Morphil in Senegal	45
	3.3.3 Comparing the two experiences	47
	3.3.4 Supravillage organization	49
	3.3.5 Women and water distribution	50
3.4	System maintenance and farmer organization	51
	3.4.1 Maintenance implications of design choices	51
	3.4.2 Social factors influencing maintenance organization	51
3.5	Design perspectives and dilemmas	53
	3.5.1 Facilitating the organization of water distribution	54
	3.5.2 Facilitating maintenance organization	56
3.6	Concluding observations	57
Cha	apter 4	
	itutions, markets and design	
	M. Makadho and Paul Hoogendam	59
	Introduction	59
	Cases from Senegal and Zimbabwe	60
	4.2.1 The schemes along the Senegal river	60
	4.2.2 Experiences in Zimbabwe	62
4.3		63
	4.3.1 Access to external actors	64
	4.3.2 Distance	64
	4.3.3 Timing of external contacts	65
	4.3.4 Conditions imposed by outside actors	65
4.4	Project strategies and external relations	66
•••	4.4.1 Adapt the design	67
	4.4.2 Strengthen farmer capacity to maintain external relations	67
	4.4.3 Improve the performance of external actors	68
	4.4.4 Take up a temporary role as intermediary	69
45	Implications for design and planning	
7.5	implications for design and planning	69
	pter 5	
	ign as an interactive process	
	Meijers, Doris Ombara and Pieter van der Zaag	71
	Introduction	71
5.2°	The Nyandusi women's horticultural scheme in Kenya	72

5.3	What is interaction about?	73
	5.3.1 Discussing and adapting technical design elements	73
	5.3.2 Design parameters	75
	5.3.3 Learning through interaction	76
5.4	Who interact?	78
	5.4.1 Forgetting the obvious	78
	5.4.2 Intermediary actors, leaders and catalysts	79
	5.4.3 Other parties	80
	5.4.4 The composition and role of the design team	81
5.5	The village irrigation scheme at Ile à Morphil, Senegal	82
5.6	When interaction?	85
	5.6.1 Design as an ongoing process	85
	5.6.2 Implications for project planning and organization	86
5.7	How to organise interaction?	88
	5.7.1 The setting	88
	5.7.2 The pace of the process	88
	5.7.3 The procedures: control and initiative	88
	5.7.4 Communication methods for design issues	89
5.8	Summary and conclusions	90
Des	apter 6 igning sustainable farmer-managed irrigation in Africa as Horst and Jan Ubels	93
	Introduction	93
	An integrative conceptual framework: recall and elaboration	94
6.3	Towards an improved method: tuning the technical system to the	
	social environment	96
6.4	Interaction as a guiding principle in the design process	98
	6.4.1 Challenges for technical and socio-economic professionals	98
	6.4.2 Design staff, farmers and other local parties	98
	6.4.3 Elements of an interactive design process	99
6.5	Implications for intervention strategies	101
	6.5.1 Irrigation policy	101
	6.5.2 Identification, formulation and feasibility	101
	6.5.3 Evaluation	102
	6.5.4 Time horizons	102
6.6	Orientations for research	103
	6.6.1 Design	103
	6.6.2 Intervention	104
6.7	Training in new professional skills	104
6.8	Epilogue	105
Refe	erences	106
Participants of the workshop		
Curriculum vitae of the authors		

List of figures

1.1 Forms of use of an irrigation system The system, its forms of utilization and the corresponding social 1.2 contexts 1.3 Basic design elements in irrigation systems Conventional procedure: the system and its use are designed ignoring 1.4 the social context of the farmers Discrepancies between design assumptions and farmers' reality 1.5 1.6 The 'tuning' approach to irrigation design The design of the tertiary units in the Jahaly Pacharr scheme 2.1 The design of the fields in the Jahaly Pacharr scheme 2.2 3.1 A farmer constructed irrigation network and an engineer designed scheme in Baringo District, Kenya Comparison of technical and social considerations 3.2 3.3 Social aspects and design dilemmas 5.1 Original layout Nyandusi scheme 5.2 Final layout Nyandusi scheme The transformations of design, design team and users during an 5.3 interactive design process. Patterns of interaction between the design team, the landowners and 5.4 the direct users of Nyandusi Use as an outcome of both the physical system and the social environ-6.1 ment. 6.2 Technical requirements and prescriptions 6.3 Social factors and considerations 6.4 Linkages between forms of use and social environment.

List of tables

2.1 Modern, improved and unimproved irrigation in the Jahaly and Pacharr swamps (ha)
 2.2 Tuning design to farmers' objectives
 2.3 Tuning design to intra-household organization of labour
 6.1 Dimensions of interactive design processes

IRRIGA

List of abbreviations

"A	chang

Europear

on irriga

pointing

shape an

pants dr social fa

Their an

shift the make of

three le

environ

tions be

A 'tunir

is set u

review

shape a

LUCAS

Agricu

ant spe

the sta

Conse

comm

irrigat

in Feb

FAO Food and Agriculture Organization

International Institute for Hydraulic and Environmental Engineering, IHE

The Netherlands

Institut Sénégalais de Recherches Agronomiques, Senegal **ISRA**

NFIF National Farm Irrigation Fund, Zimbabwe

PIU Provincial Irrigation Unit, Kenya

Périmètre irrigué villageois (French, irrigated village scheme) Senegal PIV **SAED**

Société d'Aménagement et d'Exploitation des terres du Delta et des

vallées du Sénégal et de la Falémé, Senegal

USAID United States Agency for International Development

WARDA West Africa Rice Development Association

Wageningen Agricultural University, The Netherlands WAU

Preface

This book seeks to modify the method for designing irrigation systems. A design is not a goal in itself. Rather, it is the use that is made of a system that matters; for farmer and engineer, government and donor. Up to now, irrigation design has been the domain of engineers and been regarded as being concerned mainly, if not only, with the 'nuts and bolts' needed to build a technical system. The use made of a system is therefore not easily turned into a design consideration.

By making the design pivot on use, we would be compelled to systematically consider the social and economic factors that play a role in the use of irrigation systems. These are not easily identifiable. Farmers' objectives, the division of labour between the sexes, patterns of farmer collaboration, financial management capacities, availability of external services and inputs, market opportunites and obstacles for agricultural products, are only some of the many factors that directly influence the use made of an irrigation system. Moreover, such social and economic factors do not straightforwardly relate to technical choices. In this book an approach is proposed that allows analysis and discussion of the interrelations between socio-economic and technical factors.

Although design was taken as the starting point, the observations may also be useful to analyze the linkages between technical and social factors in operation and maintenance, in studying performance, in developing more comprehensive irrigation policies, in planning, guiding and monitoring projects and programmes.

The target group of this publication consists of field workers, policy advisors, technicians, community development workers, donor officers, consultants and implementors involved in irrigation development. The contents may interest researchers and trainers also. It aims to bridge some of the conceptual gaps faced in understanding irrigation in specific social environments.

The texts in this book are a result of the international workshop on design of sustainable farmer-managed irrigation in sub-Saharan Africa, held in Wageningen, the Netherlands, in February 1990. At its closure, eleven participants went into seclusion each seeking to draft chapters that would focus on one aspect of the use of irrigation systems. These chapters were to be based on both their own

contributions and the contributions of other participants to the workshop. The chapters were later edited for publication in this book.

The book would not have been possible without the papers written for the workshop, the discussions held and the insights gained. The authors who contributed to this book therefore owe much to all the other participants of the workshop. Originating from eight African and four European countries, they brought together a gamut of practical experiences, analyses and opinions which have laid the basis for this book. This is apparent also from the many quotations from papers written for the workshop.

We express our gratitude especially to Sylvester Povel. As the main organizer of the workshop, he has brought in his many years of experience in farmer managed irrigation development in Eastern Africa and urged the Department to link up its research insights with the daily reality of projects. Without his enormous and multi-faceted effort, this book would not have been possible.

We also thank all other people who have devoted their creativity and perseverance to the preparation of the workshop: Michael de Bont, Paul Hoogendam, Wim Kloezen, Peter Mollinga, Ton Meijers, Jaap-Jan Speelman, and Pieter van der Zaag. A special word is directed towards Joke Heynekamp for her secretarial support, precision and gentle collaboration and Maarten van Bentum for his criticism of the final draft.

Mention should also be made of senior and junior researchers of the WARDA project on water management in the Senegal valley who contributed to the lines of thinking in this book. Frans Huibers, Boubacar Fall, Ibrahima Dia and Geert Diemer merit special mention. The latter two were the first to promote the idea of an international workshop, in 1986. Because social science studies had yielded insights mainly in irrigation's impact on society, they proposed that in this workshop society's impact on irrigation was be studied and that the lead to be taken by engineers. Diemer also helped us edit and produce the book.

Many other people have in one way or the other contributed to the workshop and the book. The most important ones are the farmers, fieldworkers and engineers, whose daily work and experiences are the source and subject of each and every paragraph of this book.

Through this book we hope to contribute to the art of designing sustainable irrigation by bridging some gaps between engineering idiom, farmer language and socio-economic concepts.

October 1992, Wageningen

Lucas Horst Jan Ubels

Tuning irrigation systems to their social environment

Towards an improved design method

SUSAN MINAE AND JAN UBELS

1.1 Introduction

Nowadays, the implementation and management of most irrigation schemes in Africa routinely involve socio-economic components. The design of the technical provisions however is still regarded as the monodisciplinary domain of the engineer. Socio-economic components have not yet fully entered the methods and concepts that engineers bring to the design job. Their conceptual tool kit has remained much the same over the past two decades. In many of the schemes studied in this book, for instance, no comprehensive methods or concepts were applied that assured the mutual adjustment of technical shape and social environment. Socio-economic data were used, but only to set boundaries for a design process which centered around technical considerations.

This book is an attempt at contributing to a perspective that allows that adjustment: essentially a change in thinking about what design is about. The focus is shifted from the physical system to the use that is made of it. The primordial criterion for a water distribution system, for example, is not whether the hydraulic characteristics of the canal network are technically optimal in view of the water requirements and the water resources. The crucial issue is whether the water distribution system fits the organizational capacities and patterns of the users in terms of communication and group decision-making. Only in that case the technical optimum becomes an issue.

In this introductory chapter we sometimes give a description of conventional design method that some may find inaccurate and perhaps even a bit caricatural. The aim is to show that technical engineering idiom and reasoning still dominate the design process even when social and economic information is collected.

Comparison of modern and farmer-managed irrigation development in Africa suggests a close link between the physical system and social environment. Features of the physical system seem to influence the social patterns arising around it while, turned around, characteristics of local society appear to determine the shape of the system and the use that is made of it (Gray 1963. Fleuret 1985, Diemer and van der Laan 1987, Horst 1989, Diemer and Ubels 1991). This